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Parametrically excited surface wave modes on a fluid layer driven by vertical forcing 
can interact with each other when more than one spatial mode is excited. We have 
investigated the dynamics of the interaction of two modes that are degenerate in a 
square layer, but non-degenerate in a rectangular one. Novel experimental 
techniques were developed for this purpose, including the real-time measurement of 
all relevant slowly varying mode amplitudes, investigation of the phase-space 
structure by means of transient studies starting from a variety of initial conditions, 
and automated determination of stability boundaries as a function of driving 
amplitude and frequency. These methods allowed both stable and unstable fixed 
points (sinks, sources, and saddles) to be determined, and the nature of the 
bifurcation sequences to be clearly established. I n  most of the dynamical regimes, 
multiple attractors and repellers (up to 16) were found, including both pure and 
mixed modes. We found that the symmetry of the fluid cell has dramatic effects on 
the dynamics. The fully degenerate case (square cell) yields no time-dependent 
patterns, and is qualitatively understood in terms of third-order amplitude equations 
whose basic structure follows from symmetry arguments. In  a slightly rectangular 
cell, where the two modes are separated in frequency by a small amount (about 1 %), 
mode competition produces both periodic and chaotic states organized around 
unstable pure and mixed-state fixed points. 

1. Introduction 
When a fluid layer is subjected to a uniform oscillation, standing waves a t  half the 

driving frequency occur as the result of a parametric instability first observed by 
Faraday. The interaction between surface wave modes leads to a variety of 
interesting nonlinear phenomena, including chaotic dynamics. Modal interaction 
generally occurs when two modes are simultaneously resonant or nearly resonant. 
Various authors have addressed aspects of this problem. 

Miles (1976) investigated nonlinear surface waves by first treating the inviscid 
problem using Hamiltonian methods, and then adding linear damping to account for 
the dissipation found in experimental systems. Later, Miles ( 1 9 8 4 ~ )  analysed in 
detail the dynamics of two modes with natural frequencies in the ratio 1 : 2  
interacting in a cylindrical container subjected to vertical oscillation. The problem 
of modal interactions in a cylindrical container subjected to horizontal excitation 
was also analysed (Miles 1984b), and has recently been addressed experimentally by 
Funakoshi & Inque (1987), who found generally good agreement with the theoretical 
predictions. 

Several years ago, Ciliberto & Gollub (1984, 1985a, b)  studied the competition of 
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two modes with a ratio of natural frequencies close to unity, in a cylindrical container 
subjected to vertical excitation. They found that chaotic states occur as a result of 
spatial mode competition. Meron & Procaccia (1986a, b )  subsequently derived a set 
of amplitude equations for comparison to these experiments, and succeeded in 
explaining the major experimental observations. Holmes (1986), using a perturbation 
technique originally due to Melnikov, demonstrated the existence of chaos for the 
interaction of two or more spatial modes in a vertically excited cont,ainer. Gu & 
Sethna (1987) analysed in detail the problem of interactions bet,ween modes with 
frequency ratio 1 : 2 in a rectangular geometry. 

In all of these investigations, the existence of a resonance condition between two 
modes is crucial to the dynamical behaviour. The effect of modifying the internal 
detuning (natural frequency difference) of the two modes has not yet been addressed 
experimentally. In  the present paper, we report an experimental investigation of 
modal interactions in the square and rectangular geometry. Our attention is 
concentrated on pairs of modes that are degenerate in a square cell and non- 
degenerate when the symmetry is broken. The major goal of the investigation is to 
understand the consequences of symmetry and degeneracy in modal interactions. 
The significance of this effort is not limited to surface waves or even fluid systems. 
In fact, the form of the dynamical equations for the slowly varying mode amplitudes 
is expected to be determined by symmetry considerations combined with normal 
form analysis, without detailed computations (Meron 1987). On the other hand, 
amplitude equations determined by perturbat,ion analysis of the hydrodynamic 
equations are certainly required for quantitative comparison, and full numerical 
computations based on the partial differential equations may be required in some 
cases. These experiments may shed light on the relative merits of these different 
theoretical approaches. 

From an experimental point of view, the problem of studying modal interactions 
is not an easy one. Even if only two spatial modes contribute significantly to the 
dynamics, four slowly varying amplitudes must be measured to specify the state of 
the interface. Furthermore, the bifurcation structure of the problem is not completely 
determined by the stable states of the system : one would like to study the basins of 
attraction and detect the unstable fixed points as well. Finally, several different 
parameters must be adjusted to map out the behaviour of the system (including 
driving amplitude and driving frequency). Since the bifurcation structure is 
complicated, and small changes in these parameters are quite significant, automated 
methods of finding stability boundaries experimentally are required. Various 
experimental innovations allowed these requirements to be met. 

2. Theoretical background 
2.1. Single-mode dynamics 

The surface deformation produced by each spatial mode in rectangular geometry has 
the form 

Zmn(x, y, t )  = [A,,(t) cos (+t) +B,,(t) sin ( $ 4 1  [cos (mnx/L,) cos (nny/L,)]. (2.1) 

Here w = 27cf is the driving angular frequency, A,, and B,, are mode amplitudes 
that in the weakly nonlinear regime vary on a timescale much larger than l/w, m and 
n are integers giving the number of half-wavelengths in the x- and y-directions, and 
L, and L, are the dimensions of the cell containing the fluid. 
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The dynamics can be reduced to a set of amplitude equations, that is, ordinary 
differential equations in the slowly varying mode amplitudes. The dynamical 
behaviour of a single spatial mode is described in a two-dimensional phase space for 
the in- and out-of-phase amplitudes. Amplitude equations appropriate for this case 
were derived by Miles (19844 and later by Gu, Sethna & Narain (1988) ; these latter 
authors included a detailed analysis for the specific case of rectangular geometry. The 
basic approach was to perform a perturbation analysis (limited to third order in the 
amplitudes) of the partial differential equations for the inviscid problem. Linear 
damping was then added to account for the dissipation present in a real system (Miles 
1967). The resulting equations have the form 

Q m n  = aCmn+PQmn+yICmn12Cmn = f l ( c r n n , C r n n ) ,  ( 2 .2 )  

where the complex amplitude C,, = Amn-iBmn, and the right-hand side will be 
later abbreviated as a function S of the complex amplitudes. 

The asymptotic states correspond to either the flat surface or two standing waves. 
However, several interesting predictions concerning unstable solutions and transient 
behaviour were obtained from analytical and numerical analysis of those equations 
(Gu et al. 1988). The onset of waves was predicted to be subcritical (with hysteresis) 
for f < 2f,, (where fmn is the natural frequency of the mode) and supercritical for 
f > 2f,,. The basins of attractions of the various fixed points are expected to be 
interlaced as they spiral out from the neighbourhood of the origin. Those predictions 
as well as the experimental verification of some of them are further discussed in $4. 
(Some measurements on a single mode were performed by Virnig, Berman & Sethna 
1988. The prediction of hysteresis also follows from simple considerations involving 
amplitude equations, as discussed by Meron 1987.) 

2.2. Interacting modes 

When two or more spatial modes are excited simultaneously, the amplitude 
equations contain the independent dynamics of each of the modes and also their 
coupling. For general boundary conditions, the coupling can be quite complex. On 
the other hand, symmetry considerations greatly simplify the task of obtaining the 
amplitude equations by reducing the number of allowed coupling terms a t  any given 
order in the perturbation expansion. The form of the equations can be obtained even 
if the calculations are not performed explicitly (Meron 1987 ; J. Guckenheimer 1988, 
private communication ; Golubitsky & Shaffer 1985). In  the following, we briefly 
discuss the form of the appropriate amplitude equations for the square and 
rectangular geometry. 

The equations must be invariant under a simultaneous change of sign of the 
amplitudes (Amn and R,,) of all the modes. This is because a translation in time 
equal to  one period of the forcing leaves the physical system unaffected. Such a 
translation corresponds to a phase shift of all the modes by n with respect to the 
forcing, since they oscillate a t  half the driving frequency. Such a phase shift is of 
course equivalent to a sign change of A,, and Bmn. 

If the cell has rectangular symmetry, the group of transformation that leave the 
system invariant can be generated by fwo reflections through planes parallel to the 
x- and y-axes. We will call those reflections R, and R,, respectively. A given spatial 
mode will be either antisymmetric or symmetric for each of those reflections, 
meaning that the corresponding Z,, will change sign or remain the same, 
respectively. In  particular the modes ( rn ,n )  for which rn (or n) is odd are 
antisymmetric under R, (or Ry). The signs of the corresponding amplitudes are 
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changed in (2.1) when the transformation is applied, but the invariance of the 
physical system implies that the amplitude equations must not change (Meron & 
Procaccia 1986b; Simonelli & Gollub 1987). Finally, in the limiting case of square 
geometry certain pairs of completely degenerate modes transform into each other 
under a 90" spatial rotation. As a consequence, the amplitude equations must also be 
invariant under an exchange of the amplitudes of such symmetry-related modes. 

From the general treatment of parametrically forced systems (Meron 1987), it  is 
possible to limit further the number of terms in the equations by the elimination of 
all of the terms that are 'non-resonant ' with the forcing, thus reducing the system 
to its 'normal form' (Guckenheimer & Holmes 1983; Meron & Procaccia 1986b). 

The experiments described in the subsequent sections are mostly concerned with 
the two modes (3,Z) and (2 ,3)  in rectangular and square geometry. For those two 
modes the equations (up to cubic order) would read 

c 3 2  = '32 ('32, c32) + p 3 2  c 3 2 I  CZ~I '+ "32 '32 'i391 

c 2 3  = #23 (c23, c23) c 2 3  I C32I + "23 c23 C.&.j (2.3) 

where the function S, containing the single-mode dynamics, was defined by equation 
(2.2), and the other terms in each equations are the only allowed coupling terms. (For 
example, a term such as (?332 Ci3 cannot be present in the lower equation because the 
R, symmetry requires invariance of the equation under a sign change of C2, only.) 
In the degenerate case of a square cell, the corresponding coefficients are identical 
and the two equations will then be interchangeable. Thus, symmetry requirements 
and the resonance condition are sufficient to specify the form of the amplitude 
equations. 

The invariance requirements due to symmetry translate into equivalent 
requirements for the structure of the phase space (attractors, basins of attraction, 
unstable solution, etc). This means that for each fixed point there will be others 
related to it by symmetry transformations. These considerations may be applied 
dircctly to experimental data without any other theoretical assumptions, and on 
several occasions were of great help in determining the bifurcation structure of the 
system. 

3. Experimental set-up 
The experiments were performed in containers with typical horizontal sizes of 6 

cm and a depth of 2.5 cm. We used n-butyl alcohol because it was found to give a 
uniform contact line at  the Plexiglas walls. The vertical oscillation was provided by 
an electromagnetic shaker (Vibration Test Systems model 40C) driven by a 
synthesizer (Hewlett Packard model 33258) and a high-quality power amplifier. The 
vertical acceleration (and consequently the drive amplitude) was measured with an 
accelerometer (Dytran model 3 134A). 

The experimental methods employed here to study surface waves have been 
described in detail elsewhere (Simonelli & Gollub 1988). Therefore, we limit our 
distussion of experimental techniques to essential matters. Basically, there are three 
novel features to the methods employed in this work : ( a )  all of the significant mode 
amplitudes were measured ; ( b )  the stability boundaries were determined in an 
automated fashion; and (c) the transients and basins of attraction were studied in 
addition to the attractors themselves. 
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3.1 Modal decomposition 

The experimental methods were inspired by the need to measure all of the slowly 
varying amplitudes A,, and B,, contributing to the deformation field Z ( x ,  y, t ) .  
These amplitudes can be measured by utilizing a number of local probes equal to the 
number of nearly resonant modes. The output of each probe is sent to a double-phase 
lock-in amplifier, which produces signals proportional to the in- and out-of-phase 
components of the surface displacement at that location. Since the spatial 
distribution of the modes and the locations of the probes are known, a simple linear 
combination of the signals from the various probes yields the individual mode 
amplitudes A,, and Bmn. (For the case of two modes, there are two probes and four 
mode amplitudes.) 

The local probes actually employed are photodiodes sensitive to the optical 
intensity in a shadowgraph image. In  figure 1 (a ,  b )  we show two examples of images 
formed by surface wave patterns relevant to the present paper. Local probes based 
on such images have the advantage of not being intrusive. Though some nonlinearity 
is present in the shadowgraph image if the wave height is not small compared with 
the wavelength, this is not a serious problem for the present investigation because 
the most important experimental quantities are ratios of the mode amplitudes. The 
measurement nonlinearity was found to yield errors of only a few per cent in these 
ratios. However, the errors in the individual amplitudes due to optical nonlinearity 
can be up to 25% in some cases. If desired, non-optical probes could be utilized, but 
these have the disadvantage of possibly perturbing the flow. 

3.2. Parameter-space structure 
There are two essential parameters that affect the dynamics : the driving frequency 
f = w/27c, and driving amplitude A .  Since the dynamics are extremely sensitive to 
these quantities, we found it useful to use an automated scanning process to locate 
the stability boundaries by a method of successive approximation. In searching for 
the stability boundaries of the flat surface state, for example, the computer scans the 
amplitude A a t  constant driving frequency, alternatively with positive and negative 
increments (to allow for possible hysteresis). As the search converges, the step size is 
reduced and the waiting time between steps is increased. The trade-off between time 
and accuracy has been discussed by Simonelli & Gollub (1988). The computer search 
is stopped and another driving frequency is chosen when the desired accuracy is 
attained. 

3.3. Phase-space structure and transients 
We explored the structure of the phase space by means of a large number of 
transients starting from a variety of initial conditions. This was accomplished by 
starting from parameters ( f  ’, A’)  deviating slightly from the point ( f ,  A )  under 
investigation, and then switching the parameters to (f, A )  suddenly. In some cases, 
the phase of the driving was also stepped to obtain initial conditions not otherwise 
accessible. This approach gives the possibility of following the stable and unstable 
fixed points, and the structure of the basins of attraction in phase space, as a function 
off and A .  
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FIGURE 1. Shadowgraph images produced by (a) a pure (3,2) mode and ( b )  a superposition of the 
(3,2) and (2,3) modes with equal amplitudes. The images have been averaged over one period of 
the forcing and then digitally enhanced. 
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FIGURE 2.  Experimental parameter space for the ( 2 , 2 )  spatial mode in a square cell. Stability 
boundaries are shown as a function of driving amplitude A and frequency f. The wave onset is 
subcritical for f < 2jzz = 12.24 Hz, where fzz is the natural frequency of the mode. The hysteretic 
region A shrinks to zero at the resonant frequency. In this and subsequent figures, the driving 
amplitude may be compared to the half-wavelength, which is typically 2 cm. 

4. Single-mode dynamics 
To study the single-mode dynamics, we concentrated on the ( 2 , 2 )  mode in a square 

cell. An experimental parameter-space diagram obtained by automated scanning is 
shown in figure 2. (We have chosen to use physical units rather than dimensionless 
variables in presenting the results, to preserve a sense of the actual scale of the 
phenomena.) The two curves represent the thresholds for the waves upon increasing 
and decreasing A .  Hysteresis is clearly visible for f < 2fi2, and the hysteretic interval 
goes to zero approximately a t  the resonance, as predicted. (Gu et al. 1988 actually 
predict that the transition from inverted to normal bifurcation occurs for a slightly 
positive detuning. This small correction would not be visible with the accuracy of the 
threshold measurements allowed by our apparatus.) Unfortunately, the onset of the 
(3 ,O)  and (0,3) modes prevents study of the region f < 2f2,. 

Three distinct regions are found in figure 2 .  At the lowest A only the flat surface 
is stable. In region A the flat-surface state and two stationary waves, differing by n 
in the phase $22 = arctan( - B2,JA2,), coexist for a total of three stable fixed points. 
Finally, in region B the stable states are the two stationary waves. 

The transition at  the lower boundary of region A is predicted to occur via two 
simultaneous saddle-node bifurcations. We represent this process by the schematic 
notation Si-+Si+2(Sa+Si), where Si represents a sink and Sa is a saddle. (The 
introduction of this notation is unnecessary here, but is useful in the more complex 
case of modal interactions to follow.) At the upper edge of region A, the saddles 
merge with the origin, which then loses its stability : Si + 2Sa + Sa. 

The predicted phase-space structure is quite interesting, especially in region A 
where the flat surface and stationary waves coexist. The various basins of attraction 
are expected to be interlaced in such a way that, for example, it is possible to reach 
the origin starting with a wave of arbitrary amplitude, provided that the initial 
phase q5 is appropriate. In figure 3 (a) ,  we reproduce the corresponding phase-space 
diagram from Gu et al. (1988) ; i t  shows the basins of attraction of the various fixed 
points. 

18-2 
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FIGURE 3. Theoretical and experimental phase diagrams for a single spatial mode, corresponding 
to region A of figure 1. (a )  Theoretical phase-space structure, reproduced from Gu et al. (1988). The 
diagram contains two symmetric fixed points corresponding to stationary waves, the fixed point 
a t  the origin, and two saddles. The basins of attraction of these fixed points are interlaced. ( b )  
Experimental phase space showing essentially the same structure as in (a) .  The approximate 
locations of the saddles are shown by the symbol x . In  this and subsequent figures, the wave 
amplitudes may be compared to the half-wavelength, which is typically 2 cm. 

Using controlled initial conditions, we were able to observe this behaviour 
qualitatively, as shown in figure 3 (b).  Three stable fixed points corresponding to  the 
flat surface and to stationary waves are clearly visible. From the transients leading 
to the origin it is clear that  this state can be reached starting with a larger wave than 
some initial conditions leading to stationary wave states, provided the initial phase 
is appropriate. It is apparent that there must be saddle points also, but we were 
unable to determine their location accurately with the limited number of transients 
shown. It is difficult to  study the single-mode dynamics quantitatively because 
damping causes the timescale of the transients to be relatively fast. They last only 
a few wave periods, owing to  the small size of the system. The comparison between 
figures 3 (a )  and 3 ( b )  can be made only a t  the qualitative level because the parameters 
do not correspond in the two cases. 

5. Interaction of completely degenerate modes in square symmetry 
To study the interaction of two completely degenerate modes, we used a square 

cell of size 6.17 cm. Attention was concentrated on the modes (3 ,2)  and (2 ,3) ,  because 
they are adequately separated from other resonances. I n  addition, symmetry 
considerations provide stronger constraints on the form of the dynamical equations 
for this pair of modes than for some others, since one of the indices is odd, and the 
other is even, as discussed in $2. 

5.1, ,Parameter-space diagram 
In  figure 4 (a ) ,  we present an experimental parameter-space diagram showing the 
major resonance of interest and the neighbouring ones. The hysteresis described in 
$4 for isolated modes is present here as well. In  figure 4(b), the structure near the 
(3 ,2)-(2,3)  resonance is shown in much greater detail, including additional stability 
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FIGURE 4. (a )  Parameter-space diagram for a square cell (6.17 x 6.17 cm). Several resonances are 
visible, corresponding to pairs of distinct but degenerate modes. The resonances are asymmetric : 
subcritical on the left, and supercritical on the right. ( b )  Expanded view near the (3,2)-(2,3) 
resonance. Three primary regions are found: the flat surface, mixed states in region B, and pure 
states in region D.  The intermediate regions A and C are characterized by coexistence of different 
types of fixed points (flat or mixed in A ,  mixed or pure in C) which are realized for different initial 
conditions. 

boundaries. There is of course a region in which only the flat surface is stable. In  
region B of the diagram the stable states are superpositions of the two modes, with 
equal amplitudes (I C,,I = C2,1 2). Owing to the symmetry properties of these modes 
under the transformations R, and R,, four equivalent mixed states are expected and 
are found experimentally. I n  two of them the phase difference 6q5 between the two 
modes is zero, while for the other two ti$ = K. In region D,  on the other hand, only 
pure states are found. Owing to the symmetry, either pure state can be found 
depending on the initial conditions. Regions A and C are hysteretic: in A the flat- 
surface state coexists with mixed states, while in C mixed states coexist with pure 
states. Examples of shadowgraphs produced by a pure (3,2) state and an in-phase 
mixed state are shown in figure 1.  (The apparently large harmonic content of the 
images is due to optical nonlinearity and image enhancement.) 

The range of frequencies in the parameter-space diagram is limited by the need to  
avoid excitation of other modes. The range in A is limited by the occurrence of more 
complicated phenomena caused by strong nonlinearity. For example, when A is 
increased above the values represented in the diagram, breaking of the waves occurs. 
The study of such states is outside the domain of this paper. 

Qualitative observations were performed on other pairs of degenerate modes. For 
the (3,l)-(1,3) resonance, mixed states and pure states were also found, and the 
parameter-space structure is similar to the one just described for the (3,2)-(2,3) 
resonance. However, there are some differences. The modes ( 3 , l )  and (1,3) both 
change sign under either R, or R,; hence reflection symmetries do not simplify the 
amplitude equations in this case, so the existence of mixed states with 6q5 = 0 does 
not imply the existence of mixed states with 6q5 = K and vice versa. In  fact, only 
Sq5 = 0 was observed. Similarly, reflection symmetries do not constrain the (4 ,O)-  
(0,4) modal interactions (because these modes are invariant under both R ,  and R,) 
and we observed only ti$ = K for this case. The excitation of other nearby modes 
prevented a thorough investigation of these resonances. 
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FIGURE 5. Experimental phase-space diagram in region B,  showing a bidimensional projection in 
the plane of the in-phase amplitudes. About thirty transients are shown in the diagram, most of 
which start in the vicinity of the origin. Four symmetric mixed states are visible. Observation of 
the trajectories near the axes shows that the four pure states are saddles. 
FIGURE 6. Experimental phase-space diagram in region C. Four mixed and four pure states are 
stable in his region. as revealed by the asymptotic behaviour of the trajectories. Eight saddles ( x ) 
are located between them. The distances of the various fixed points from the origin are comparable 
but not identical. 

5.2.  Bifurcations of fixed points 
Using the method of controlled initial conditions, we have been able to map out the 
basic phase-space structure corresponding to each of the regions of parameter space. 
We present two examples in figures 5 and 6, corresponding respectively to regions B 
and C of figure 4 ( b ) .  (The diagrams are two-dimensional projections on the subspace 
of the in-phase amplitudes.) A careful examination of these figures reveals the 
locations of the stable and unstable fixed points, which are denoted by solid circles 
and crosses. The expected reflection and rotation symmetries are visible even with a 
relatively limited number of trajectories. 

At this point, we turn from the actual experimental data to schematic phase-space 
diagrams (figure 7)  showing the structure for the various regions of the parameter 
space, using a similar projection. The geometry has been simplified to show the 
essential features. In  region A both the flat-surface and mixed states are stable and 
are reached for different initial conditions. The phase space is organized around sinks 
located a t  the origin and symmetrically along 45" lines; these latter are mixed states. 
Four pure-state fixed points are also shown by a cross, but these are unstable 
(saddles). We infer from a combination of direct experimental evidence and the 
following theoretical considerations that there must be eight additional fixed points, 
located on an inner ring, four of which are mixed-state saddles and four of which 
are pure-state sources (open circles). 

As pointed out in $2, the amplitude equations for two interacting spatial modes 
contain the single-mode terms plus nonlinear coupling terms. The existence and 
locations of the pure-state fixed points are unaffected by the coupling, because the 
cross-terms vanish when one of the mode amplitudes is zero. (However, the stability 
properties of these fixed points may be and, in fact, are affected by the coupling.) 
From this consideration, it is clear that the number of pure-state solutions must be 
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FIGURE 7. Schematic phase-space structure for the square cell, in the regions A ,  B ,  C and D of figure 
4 ( b ) .  The stable fixed points are shown as solid circles, the sources as open circle and the saddles 
as crosses. The diagrams represent bidimensional projections in the plane of the in-phase 
amplitudes. Geometrical relationships are only shown qualitatively. In  region A four mixed states 
and the flat surface are stable. In B only mixed states are stable, as in figure 5. In region C the pure 
and the mixed states are both stable and eight saddles are interposed between them, as in figure 
6. The saddles move from the pure to the mixed-state fixed points as A is increased. In region D 
only the pure states are stable. 

the same as it would be for two non-interacting modes ; these are the pure states that 
are shown on the axes of the inner ring in figure 7 .  The remaining fixed points (mixed- 
point saddles on the inner ring) must be present for continuity of the differential 
geometry of the diagram. 

In region B only the mixed states are stable. Here the surface is shown as a source, 
the mixed states are sinks and the pure states are saddles. I n  region C the mixed 
modes and the pure modes are sinks while eight saddles are interposed between them. 
Finally, in region D the pure states of both types are stable, while the mixed states 
are unstable (saddles). 

The multiple bifurcations obtained by varying A a t  fixed frequency are shown 
schematically in figure 8 (a)  for negative detuning (f < 2f3, = 2f2,) and in figure 8 (b )  
for positive detuning. The diagrams represent two-dimensional projections, in the 
space spanned by A,, and A ,  of the five-dimensional space spanned by A32,  B32, A,,, 
B,, and A .  The various regions in parameter space are schematically marked on the 
A-axis. If the boundary between the flat surface region and region A is crossed (by 
increasing A ) ,  pairs of fixed points are generated by bifurcations of the ‘saddle node ’ 
type, which means that a saddle and a sink (or a saddle and a source) are created 
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FIGURE 8. Schematic bifurcation diagrams for the square cell. They represent two-dimensional 
projections of the five-dimensional space spanned by the four mode amplitudes and the driving 
amplitude A .  Sinks are represented by Bolid lines, saddles by dashed lines and sources by dotted 
lines. (a)  Bifurcation diagram for increasing A withf < 2faZ = 2fZf,,. The stable mixed states and the 
unstable pure states (saddles) are first generated by saddle-node bifurcations, together with the 
unstable points that appear on the inner ring in region A of figure 7 .  These latter points then merge 
with the origin a t  the ,4-B boundary. The pure-state saddles each later eject two saddles and 
become sinks at the B-C boundary. Finally, the saddles merge with the mixed-state sinks, which 
then become unstable. ( b )  Bifurcation diagram for increasing A forf > 2f32 = 2fZ3. In this case only 
one bifurcation is encountered. Pure-state sinks and mixed-state saddles are both generated by 
forward bifurcations. 

simultaneously. Using the notation introduced in $3 ,  we summarize this process as 
follows : Si -+ 4(Sim + Sam) + 4(SaP+ Sop)  + Si, where So represents a source, and the 
other symbols are unchanged. In addition, the superscript p stands for pure states 
and m stands for mixed states. 

When the A-B boundary is crossed, four saddles and four sources merge with the 
origin, which then becomes a source. (The ‘collisions’ must happen all a t  the same 
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A because the stability of the origin cannot be influenced by the nonlinear coupling 
terms. The linear parts of the amplitude equations are identical for the two modes, 
so their interchangeability requires that there be only one bifurcation point.) We 
write this process as 4sop + 4Sam + Si +So. 

At the 3-C transition each of the pure-mode saddles ejects two saddles and 
becomes a sink : 4(SaP) + 4(SiP + 2Sam). Finally, the saddles ejected from the pure 
states 'collide' with the mixed states, which then lose their stability and become 
saddles in region D : 4(Sim + 2Sa") + 4Sam. 

For positive detuning, the situation is much simpler. There is only one bifurcation 
point where the mixed states (saddles) and the pure states (sinks) are generated 
from the origin by normal bifurcations, as shown in figure 8(b). 

6. Interaction of two nearly degenerate modes (rectangular cell) 
In order to study the effects of removing the degeneracy, we studied a rectangular 

cell in which the two modes (3,2) and (2,3) are not equivalent. The aspect-ratio of the 
cell differs from unity by 7%. (The cell size is 6.17~6.6cm.) This produces a 
difference of about 1.5% between the resonant frequencies of the two modes. It was 
not possible to increase this difference without producing unwanted interference 
from other resonances. 

6.1. Parameter space and bifurcations of $xed points 
A detailed parameter-space diagram for the rectangular cell is shown in figure 9. The 
entire diagram shows the non-equivalence of the two modes; for example, there is 
now a region of time dependence located asymmetrically with respect to the two 
resonances. As noticed for the square cell, this is not surprising since even the single- 
mode stability diagram is asymmetric with respect to the resonant frequency. 

The two resonances are resolved in the rectangular cell ; (3,2) resonates at  lower 
frequency than (2,3). In regions B and D of figure 9, only one type of pure state is 
found. (In each region the mode prevails that is closer to its resonance.) In C the two 
pure states coexist. The flat surface and pure (3,2) state coexist in A ,  but a similar 
region for the pure (2,3) state is not found. 

No stable superpositions of the two modes are found for the rectangular cell. On 
the other hand, time-dependent mixed states are found in F .  Both time-dependent 
mixed states and the flat surface are observed in E .  Finally, the pure (2,3) state and 
time-dependent mixed states coexist in region G .  

The phase-space structure for the time-independent regions was obtained for the 
rectangular cell and is shown in figure 10. Three stable fixed points, including the 
origin and two symmetric points representing the pure (3,2) state, are found in 
region A .  The symmetric points differ in phase by R with respect to the forcing. The 
pure (2,3) states are saddles. According to the single-mode model discussed in $2.1, 
there must also be additional (3,2) and (2,3) fixed points. A combination of 
experimental evidence and theoretical argument (similar to that for the square cell) 
leads us to draw these additional fixed points on an inner ring, as shown. 

At the A-B transition, the origin loses its stability when the inner sources and 
saddles coalesce. But this time (in contrast to what happened in the square cell) the 
coalescence process on the horizontal and vertical axes may not occur at the same 
A .  At the B-C transition, we find that the pure (2,3) saddles become sinks by ejecting 
two saddles each. Finally, upon crossing the C-D boundary, the saddles merge with 
the pure (3,2) fixed points, causing them to lose their stability. 
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FIGURE 9. Experimental parameter-space diagram for the rectangular cell. The two modes ( 3 , 2 )  
and ( 2 , 3 )  are resolved ; ( 3 , 2 )  resonates at lower frequency than ( 2 , 3 ) .  The fundamental regions are 
as follows : pure (3 ,Z)  in region B ;  pure ( 2 , 3 )  in D, and either periodic or chaotic time dependence 
in F .  In the other regions several solutions coexist : the flat surface and pure ( 3 , Z )  states in A ,  pure 
( 3 , 2 )  and ( 2 , 3 )  states in C ,  flat surface chaotic time dependence in E ,  and finally periodic time 
dependence and pure ( 2 , 3 )  in G .  
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FIGURE 10. Schematic phase-space structures (projected onto the plane of the in-phase amplitudes) 
in the time-independent regions for the rectangular cell. Symbols are as in figure 7. In region A the 
( 3 , 2 )  states and the origin are stable, while the ( 2 , 3 )  states are saddles. In  B only the ( 3 , 2 )  states 
are stable. In C the ( 2 , 3 )  and ( 3 , 2 )  states are both stable, and saddles are interposed between them. 
The saddles originate at  the (2,3) fixed points and move toward the ( 3 , 2 )  fixed points. In region 
D the (2,3) states are sinks while the ( 3 , 2 )  states are saddles, as a result of the ‘collision’ with the 
saddles in C. 
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FIQURE 11. Time series (a)  and phase-space plot ( b )  (in the plane of the in-phase amplitudes) of the 
periodic spiking process found near the upper boundary of region E ,  figure 9. We observed 
quiescent periods up to two hours, separated by waves lasting approximately one minute. In this 
and subsequent figures, the oscillation period may be compared to the (fast) wave period of 
0.07 8.  

6.2. Time dependence 

Time dependence in the rectangular cell is organized by simple attractors related to 
the formerly stable fixed points. In particular, limit cycles centred on mixed states 
or pure states are found. The time dependence can be either periodic or chaotic, with 
periodic behaviour being mainly found for higher A than chaotic behaviour. 

When A is increased very slowly to enter the time-dependent region, the first state 
encountered is a periodic relaxation oscillation. The surface stays flat for a 
considerable time, then a large wave (several mm in height) grows, reaches a 
maximum, and decays, all in a time short compared with the period. This oscillation 
is shown in figure 11 in the time domain and in phase space. 

The wave that develops during the spike can be either a mixed or a pure state, 
depending on the driving frequency. The duration of the spikes is practically 
independent of A ,  while the period of the oscillation changes dramatically with A ,  
appearing to diverge at  the lower boundary A ,  of region F .  The form of this 
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FIGURE 12. Period of the oscillation in figure 11 as a function of the driving amplitude. The 
data are obtained a t  a driving frequency of 13.8 Hz and are compared to a function T = 
T , [ d , / ( d - d , ) ~ .  The best fitting exponent is a = 1.1:::;;. 

divergence is explored in figure 12, where the experimental data are compared to a 
fitted power law of the following form: 

T = T, [ A , / ( A  -A, ) ]” .  (6.1) 

This function contains three adjustable parameters: To, A ,  and a. We find an 
adequate fit, and the best fitting exponent a is 1 . 1 T ~ : ~ ~ .  (The error is computed from 
the shape of the x2 function near its minimum.) 

If A is further increased, the system jumps discontinuously to a chaotic attractor 
centred on a mixed mode. Because of this discontinuity, i t  is more natural to study 
the transition to chaos for decreasing A .  A typical sequence of phase-space plots and 
time series is shown in the figures 13-15. The driving frequency is 13.75Hz in all 
cases and the values of A are noted on the figures. 

The first state shown (near the upper boundary of region F in figure 9) is a nearly 
sinusoidal oscillation at  13 mHz that is stable over a large range in A (145 < A < 180 
pm). In  phase space the attractor is arc-shaped and centred on the pure (3,2) mode; 
two projections are shown in figure 13, one in the subspace spanned by A,,, A,, and 
another in the subspace spanned by A,,, B,,. 

As A is reduced, the attractor develops additional loops, via bifurcations that 
break and then restore the symmetry of the attractor by adding loops on alternate 
sides. (The symmetry is always approximate, perhaps due to small experimental 
errors in the mode decomposition process.) The bifurcations become more closely 
spaced as the sequence progress, and only the first few are actually resolved. A series 
of those attractors for decreasing A is shown in the time domain and in phase space 
in figure 14. Beyond a certain point (see figures 14i,j) the attractor becomes 
extremely asymmetric. The system now spends most of its time on one side of the 
attractor until the arc shape is completely lost and a chaotic attractor is established, 
this time centred on a mixed mode (figure 15). This attractor was identified as chaotic 
by standard tests (Swinney & Gollub 1986), but a detailed study of its geometry is 
outside of the scope of this paper. That attractor persists for decreasing A through 
region E of figure 9 until, with a sharp transition, the surface becomes flat again. 
Note that this chaotic attractor and the relaxation oscillation overlap in A ,  so that 
both are present (for different initial conditions) in a small interval a t  the lower edge 
of region F of figure 9. 
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FIQURE 13. Time series (a) and two different projections in phase space ( b ,  c )  for the oscillating state 
whose transition to chaos was studied in detail. Here, f = 13.75 Hz, A = 150.4 km, and the 
oscillation frequency is 13 mHz. From the phase portraits it  is clear that the arch-like attractor is 
centred on a pure (3,2) state. This periodic state is found for 145 < A < 180 pm at this driving 
frequency and for similarly large intervals for other driving frequencies. 
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FIQURE 14(a-f). For caption see facing page 
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FIGURE 14. Sequence of time-series and phase-space plots for decreasing values of A (as indicated 
on the individual plots) a t  f = 13.75 Hz. The sequence (u-h) shows how the attractor becomes more 
and more complicated by the addition of loops on alternate sides. With a further decrease of A the 
attractor becomes strongly asymmetric ( i , j )  until a chaotic attractor centred on a mixed mode is 
established (see figure 15). 

7. Discussion 
7.1.  Consequences of symmetry breaking 

The dramatic effects of removing the degeneracy of the two interacting modes by 
breaking the geometrical symmetry have been documented in this experiment. It is 
natural then to ask what degree of asymmetry is required to produce these effects. 
We found that a detuning of the two modes by only 0.5Y0, one third that of figure 
9, produced essentially the same effects. Furthermore, even the nominally square cell 
showed a striking sensitivity to small (uncontrollable) perturbations (Simonelli & 
Gollub 1987). For example, when the square cell was repeatedly cleaned and refilled, 
a region of slow time dependence was found in several runs, though robust and 
repeatedly time dependence was found only for the rectangular cell. 

I n  figure 16 we show an example of time-dependent phenomena for a nominally 
square cell. Two different attractors are reached for different initial conditions close 
to the origin. In one case a periodic limit cycle is established after a few oscillations. 
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FIGURE 15. Time-series and two phase-space projections for the chaotic attractor centred on a 
mixed mode. This state is first observed a t  A = 135.2 when f = 13.75 Hz, and is maintained for 
smaller A until the system jumps discontinuously to the flat-surface state at the lower boundary 
of region E of figure 9. 
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FIQURE 16. Example of time dependence found occasionally in the square cell. The data are 
obtained atf = 14.1 Hz and A = 161 Fm. A limit cycle and a chaotic attractor are reached for two 
different initial conditions. Typical timescales of oscillations are longer than in the rectangular cell 
by a factor of four. We interpret this non-reproducible slow time dependence aa evidence for a lack 
of structural stability (i.e. sensitivity to perturbances) of the square-cell dynamics. 

In  the other the system wanders in an irregular way, visiting a large portion of the 
phase space. In some runs we observed very long and complicated transients lasting 
for several hours, times that are approximately two orders of magnitude longer than 
the typical timescale for modal interaction shown in figure 13 (Simonelli & Gollub 
1987). 

We infer from these observations that the degenerate case may be structurally 
unstable (Guckenheimer & Holmes 1983) with respect to small symmetry-breaking 
perturbations, in the sense that a very small asymmetry is sufficient to produce a 
qualitative change in the dynamics. Since in most cases we did not observe time- 
dependent states in the square cell, we concluded that time dependence near onset 
in that geometry is non-generic and hence did not study it further. 

Though the consequences of symmetry breaking are dramatic, it was not possible 
to determine experimentally how the system goes from the parameter space of figure 
4(b) to  that  of figure 9 as the internal detuning is increased. This is a fascinating 
question for theoretical consideration. 

7.2. Comparison with theory for the square cell 

For the square case, symmetry requirements leave a relatively small number of 
distinct free parameters (five complex coefficients) in the amplitude equations (2.3). 
J. Guckenheimer (1988, private communication) suggested that it might be possible 
to fit the model to the experimental data, and has attempted to do so. It is in fact 
possible to reproduce the qualitative structure of the parameter space of figure 4 (b )  
(including the intersection of the four stability boundaries at the resonance) and the 
general topology of the phase diagrams (figure 7) and bifurcation sequences (figure 
8), provided that the coefficients of the nonlinear terms are purely imaginary. It can 
be shown that this implies the system of equations to be Hamiltonian in the absence 
of damping; the latter enters through the real part of the coefficient a in (2.2) (Meron 
1987). In addition, no Hopf bifurcations will occur if the coefficients are such that the 
system (without damping) is Hamiltonian. This absence of Hopf bifurcations is 
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consistent with the observations, again supporting the Hamiltonian character of the 
underlying dynamics. 

Thus, the behaviour of the square cell can be qualitatively described by the third- 
order amplitude equations, with suitable coefficients. However, efforts to obtain a 
quantitative fit to figure 4 ( b )  were unsuccessful, because the model does not allow 
stability boundaries with negative curvature (i.e. that  are concave downwards). This 
failure suggests that i t  may be necessary to include certain fifth-order terms to 
describe the parameter space quantitatively. The need for higher-order terms seems 
plausible in view of the following fact : if the model is rewritten in terms of the moduli 
of the complex amplitudes, then the coefficients of the cubic terms pass through zero 
a t  the resonance, where the bifurcation changes from subcritical to supercritical. It 
is apparent that additional attention to this problem from the standpoint of 
bifurcation theory would be useful. Some possibly relevant analysis appropriate for 
the centre manifold of a square cell has been done by Golubitsky & Roberts (1987) 
and Crawford & Knobloch (1988). 

During the preparation of this manuscript, the authors became aware of 
simultaneous work by Feng & Sethna (1989) based on perturbation expansions of the 
full hydrodynamic equations. They obtain equations identical in form to (2.3) by 
direct computation instead of symmetry requirements. Furthermore, they determine 
expressions for the coefficients, and work out the resulting bifurcation sequences in 
some detail. Our experimental work seems to be in qualitative agreement with their 
predictions. However, some differences are found. In  particularly they describe (and 
have observed) two distinct types of stable mixed states, only one of which is seen 
in the present investigation. We find that the phases of the modes in the mixed states 
are equal in some cases and differ by 71 in others. Feng & Sethna also describe stable 
mixed states in which the two modes differ in phase by ire, and hence the pattern 
appears to rotate at if. Detailed comparison of the results of these two investigations 
is an interesting topic for future work. 

7.3. Time-dependent phenomena 

Though the time-dependent states in the rectangular cell are essentially not 
understood a t  the present time, the role of the pure- and mixed-mode fixed points in 
organizing the time-dependent phenomena is clearly evident. Also, the periodic 
spiking was identified as a heteroclinic loop passing near unstable fixed points. 

The route to chaos found experimentally can possibly be described, in its first 
steps, by means of ' symbolia dynamics '. Referring to the phase space plots showing 
projections in the subspace A32,A23, we can assign a symbol P to the loops with 
positive A,,  and N to the loops with negative A,,. In  this notation, we can describe 
figure 13 as (PN), figure 14(a, b )  as (PNN), figure 14(c, d )  as (PPNNN), and figure 
14(e,J as (PPPNNN). We believe that the state (PPNN) may be present but 
unresolved. These identifications may also be made from the numbers of positive and 
negative peaks in the time series. Meron & Procaccia (1987) and Meron (1987) made 
interesting predictions about the routes to chaos in interacting surface waves and in 
parametrically forced systems in general. They observe numerically a route to chaos 
via a well-defined sequence of bifurcations to states of increasingly complex symbol 
sequences. The sequences observed in our experiments resemble in some respects 
those found numerically, but appear to differ from them in detail. 
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7.4. Remarks on the experimental approach 
The phenomena investigated in this paper could not have been studied without the 
experimental methods described above. The modal decomposition process clearly 
revealed the physical nature of the various pure and mixed states. Automation of the 
process of finding stability boundaries was necessary in order to explore the 
phenomena as a function of two external parameters in a reasonable time. Finally, 
the use of repetitive transients to study the phase-space structure and locate 
unstable fixed points was critical in determining the bifurcation sequences. Once the 
need for these methods was recognized, they were not particularly difficult to 
implement, and may prove useful elsewhere as well. It would be interesting to extend 
the use of repetitive transients to the time-dependent regime, in order to investigate 
the evolution of unstable orbits and their interactions with attractors. Similarly, the 
method of determining stability boundaries could be extended to the study of 
boundaries separating distinct types of time-dependent states. 

We appreciate helpful discussions and an exchange of preliminary results with 
J. Guckenheimer and P. R. Sethna. We also have benefited from discussions with 
M. Golubitsky and E. Meron. This work was supported by the DARPA Applied and 
Computational Mathematics Program through the University Research Initiative 
Program, Contract Number N00014-85-K-0759 to Princeton University. 

Note Added in Proof. A theoretical description of the behaviour observed for the 
square cell has been proposed by Silber & Knobloch (1988) using a two-dimensional 
map that is equivariant with respect to the symmetry group D,. 
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